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Abstract—Fine-tuning large language models (LLMs) for spe-
cialized tasks is resource-intensive and challenging to scale across
multiple domains. Model merging, which directly combines pa-
rameters from fine-tuned LLMs without additional training, has
emerged as an efficient alternative. However, traditional merging
methods, such as linear interpolation, often degrade performance
due to destructive interference between conflicting parameters.
To address these limitations, we propose Layer-Adaptive Spheri-
cal Linear Interpolation (Layer-Adaptive SLERP), a novel merg-
ing strategy that i) follows a geometry-preserving SLERP path
and ii) assigns layer-specific coefficients that respect the distinct
roles of attention, feed-forward and embedding blocks. Across
50+ merges spanning six architectures and seven parameter
scales (0.5B - 7B), we demonstrate that our method significantly
improves merging stability and task-specific performance. Results
indicate that the merged 7B variant attains competitive leader-
board performance and supports production-scale deployments,
confirming the method’s robustness and applicability to real-
world adaptation tasks.

Index Terms—Model Merging, Large Language Models, Ge-
ometric interpolation, Foundation models, Scalable Deployment

I. INTRODUCTION

In the era of large language models (LLMs), fine-tuning
and instruction-tuning have become dominant strategies for
adapting pretrained models to specific downstream tasks [1].
However, these methods are increasingly constrained by the
computational cost, memory footprint, and time required to
individually fine-tune or distill large models for every use
case. As LLMs scale into the multi-billion parameter range,
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practitioners are seeking more efficient methods of model
reuse, adaptation, and composition, especially in low-resource
and multi-domain environments.

Among emerging alternatives, model merging (combining two
or more trained models into a single performant model) [2]
has received growing attention [3]. However, most existing
approaches, such as linear interpolation, task arithmetic, or
weight averaging, are often unstable, yield inconsistent per-
formance, or result in destructive interference when merging
models trained on divergent tasks [4]. More critically, there
is a lack of empirically grounded guidelines on when, why,
and how such merges succeed or fail, especially when applied
to instruction-tuned, multilingual, or domain-specific LLMs
across different architectures and sizes.

In this work, we explore a geometrically principled
model merging strategy using Spherical Linear Interpolation
(SLERP) [5] which is a method that interpolates weight
vectors on the hypersphere rather than in Euclidean space,
preserving angular relationships between models. We extend
SLERP with layer-wise parameterization, allowing different
interpolation coefficients for attention layers, feedforward
modules, and global weight structures. This technique, which
we term Layer-Adaptive SLERP, provides fine-grained control
over merge behavior and shows promising improvements in
stability and performance across domains.

To the best of our knowledge, we conducted the largest and
most systematic study of SLERP-based model merging to date,
covering more than 50 model merges across six architectural
families and seven parameter scales (0.5B to 7B), using



benchmarks such as IFEval, BBH, MATH, GPQA, MUSR,
and MMLU-Pro. Through this analysis, we:
o Identify the architectural and functional conditions under
which SLERP merging succeeds or fails.
« Demonstrate the effectiveness of layer-wise SLERP con-
figurations over traditional uniform merges.
o Propose a set of best practices for practical model merg-
ing and deployment.
o Offer the community an open framework and repro-
ducible configurations for further exploration.
Our results have immediate applications in enterprise Al
deployment, multilingual assistant development, low-resource
domain adaptation, and research into modular foundation
models. For the IEEE community, our study offers a blueprint
for scalable, reusable Al systems through lightweight model
composition.
The remainder of this paper is organized as follows. Sec-
tion II reviews related approaches to parameter merging and
geometric interpolation. Section III introduces the theoretical
formulation of Layer-Adaptive SLERP and the methodology.
Section IV presents results and analysis across multiple model
scales, while Section V discusses implications, limitations
and highlights directions for future work. Finally, Section VI
concludes the paper.

II. RELATED WORK

Recent advancements in LLMs have primarily relied on
parameter-efficient fine-tuning strategies such as adapters [6,
7], prompt tuning [8], and instruction tuning [9]. Despite their
effectiveness, these approaches remain resource-intensive for
adapting models to multiple specialized tasks [10]. Conse-
quently, model merging, which directly combines parameters
from multiple pretrained or fine-tuned models without re-
training, has emerged as an efficient alternative [10]. Initial
methods involved straightforward linear weight averaging or
task arithmetic; however, these approaches often degraded
model performance due to destructive interference and failure
to account for parameter space geometry [11, 12, 13].

To address these limitations, recent research introduced geo-
metric interpolation techniques such as SLERP, which bet-
ter preserves angular relationships between parameter vec-
tors, thus significantly reducing interference during model
merges [14, 15]. However, existing SLERP implementations
apply uniform interpolation across all parameters, ignoring
the inherent functional differences between transformer layers,
such as self-attention versus feed-forward modules [16]. In
response, more granular merging methods, including Fisher-
weighted merging [12], AdaMerging [17], TIES [18], and
Drop-And-Rescale [19], were proposed. These methods adapt
merging coefficients at a layer-wise or even parameter-wise
level, though typically introducing significant complexity or
computational overhead.

Despite these developments, comprehensive empirical explo-
ration of adaptive, layer-wise geometric merging techniques
(especially SLERP-based methods) is notably absent, par-
ticularly regarding systematic evaluation across diverse ar-

chitectures and parameter scales [20]. Additionally, practical
tools like MergeKit [21] and HuggingFace PEFT [22] have
emerged to facilitate merging implementation, yet they lack
built-in methods for efficient, adaptive layer-specific geometric
merging [16]. Our work fills these critical gaps by introducing
Layer-Adaptive SLERP, combining layer-specific parameter
interpolation with geometric SLERP to optimize merging
efficiency and robustness through extensive experiments and
real-world deployment.

III. METHODOLOGY

Let us consider M; and My be two pretrained language
models with identical architectures and parameter sets 6; and
0, respectively, where 6; € R?, Vi € {1,2} and d be the total
number of model parameters. Our goal is to construct a merged
model M, ¢rqge With parameters 0,,¢,qe that combines the joint
capabilities of M; and M, without retraining. Formally,

emerge = merge(elv 02) (1)

where the ‘merge’ function should preserve stability, general-
izability, and task-specific performance.

A naive linear interpolation-based method for the merged
parameters can be defined as,

Hlinear _

merge (1 - C)el + 602, [AS [0, 1] (2)
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where ‘c’ is the interpolation coefficient. However, this
approach ignores the curved geometry observed in high-
dimensional weight spaces. Hence, we employ spherical linear
interpolation (SLERP), which maintains a constant angular
velocity between 6; and 65 in the hypersphere.

Formally, given that 6,6, are normalized in the unit form
(i.e. [|01]] = [|02]] = 1), the SLERP-based interpolation can
be defined as,

9SLERP _ sin((1 — c)w)
merge SZ?’L((U)

: 02 3)
sin(w)
where, w = arccos(< 61,605 >) is the angle between 61,60
and < 61,0, > represents their dot product. To avoid degen-
eracy for nearly collinear/antipodal parents we clip the angle:
& = min{max{w, e}, ™ — e} with ¢ ~# 107¢ and compute the
sine ratio with hypot-based normalization.

Traditional model merging methods apply Euclidean inter-
polation of model parameters, implicitly assuming that the
weight space is flat. However, transformer weights evolve on
a curved manifold due to normalization constraints and non-
linear activations. SLERP instead operates on the hypersphere
formed by the normalized weights, ensuring that the merged
parameters remain on a consistent manifold and preserve
angular relationships between parent models.

A. Layer-Adaptive SLERP

Global SLERP applies a uniform interpolation c across
all parameters, while transformer layers are functionally het-
erogeneous; for example, attention layers capture contextual
relationships, while MLP layers focus on feature transforma-
tions and embeddings anchor token geometry. Thus, a uniform



interpolation may lead to overwriting or conflicting behaviors
between merged models. To address this limitation, we intro-
duce Layer-Adaptive SLERP, where each layer group (e.g.,
attention, MLP) is assigned its own interpolation coefficient.
Formally, let £ € N be the set of all layers. For each layer
l € L the parameter subsets 051), Hél) is formulated. Let
¢; € [0,1] denote the layer-specific interpolation coefficient for
layer [. Then, the merged parameters at the layer [ is defined
by Layer-Adaptive SLERP as,

sin(cwr) 1)

_ sin((1 — Cl)wl)a(l)

O erge = ol MO
merge sin(wy) sin(w) 2
0{" 08" . .
where, w; = arccos(W) is the angular distance
1 171172

between corresponding parameters in layer [. Finally, the
complete merged model is represented as,

U 00 ge (5)

The coefficients ¢; are chosen non—umformly based on a) Layer
Type (e.g., higher ¢; are chosen for self-attention layers (to
favour new context modelling), and lower ¢; are chosen for
MLP layers (to preserve structural embeddings)). b) Depth
Position (e.g., deeper layers blend more aggressively). c)
Functional Specialization, i.e. if one source model is more
specialized (e.g., math, language, etc.), adaptive schedules can
bias layers toward the more competent model.

For theoretical completeness, we note some properties (i)
Geodesic property. For each [, Eq. 4 lies on the great-circle
between parents, preserving per-layer scale and controlling an-
gular displacement smoothly. (ii) First-order view. Linearizing

fo around 0, gives
+ Z Cl

fo(z) =~ fo,(x
Larger ¢; where parents agree (e.g., small w; or high rep-
resentation similarity) increases useful transfer and reduces
interference; deep MLPs often show lower agreement than
early attention.
Thus, we can define an objective function J where the optimal
interpolation coefficients could be found by solving,

j(amm’ge({cl})) (6)
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with J an application-aligned validation score. In practice (to
avoid heavy tuning), we recommend a tiny validation sweep or
a budgeted BO/CMA-ES over the six scalars (24-32 trials on
a 2-3k-token set). In this work, we heuristically design {¢;}
based on model architecture and domain-specific knowledge,
and validate via benchmarks.
Layer-Adaptive SLERP operates per parameter block and is
linear in d. It requires two passes per tensor (to compute
w; and to merge) and one auxiliary buffer (streamable to
cap peak memory). Quantized checkpoints can be handled
via dequant-merge-requant in FP16. The procedure leaves
optimizer states untouched unless the serving stack requires
them.

Merges succeed when parents are compatible. We can
expose a lightweight score as,

S =a0 + BA — ~@, a, B,y >0, 7

where O is tokenizer overlap (shared tokens/strings), A aggre-
gates layer similarity (e.g., cosine/CKA proxies), and w is the
mean layer angle. We can set up some guardrails: (i) if @ > 7,
(large divergence), fall back to global SLERP or add an
embedding-alignment step; (ii) if O < 7o, align embeddings
via an orthogonal Procrustes map on shared tokens before
Eq. (4); (iii) for 0.5B models, prefer global SLERP due to
capacity fragility.

Algorithm 1 concisely represents the process.

Algorithm 1 Layer-Adaptive SLERP (per layer ()

Require: Parents {0}~ . {6\"}E : schedule {c}:
guardrails ¢, 70, 7,,.
1: for{=1to L do
2: wy <

00,057 ),

arccos( —aoyv—2m—
(uem s 177

min{max{w;, e}, 7™ — e}.

3: a+sin((1 — ¢)w;)/sinwy; b <+ sin(qwy)/ sinw;.
4 00 a8l 116y

5: end for

6: return {O(lerge}l 1 and Operee = U, Oﬁgrge

Both standard averaging and SLERP have linear time
complexity in the number of parameters 6, but differ in
memory traffic. Standard averaging performs a single pass,
requiring O(6) operations and roughly 3d memory transfers
(two reads and one write). SLERP, whether global or layer-
adaptive, requires an additional reduction pass to compute per-
layer norms and dot products, resulting in about 5d memory
transfers and an overall complexity of ©(6). Consequently, the
practical wall-clock time of SLERP is approximately 1.6-1.7x
that of simple averaging under memory-bound conditions.
Layer-Adaptive SLERP introduces no extra asymptotic cost
beyond global SLERP, as the per-layer coefficients {c¢;} are
scalar operations.

Thttps://huggingface.co/Qwen/Qwen2.5-0.5B- Instruct
Zhttps://huggingface.co/Youlln/ECE.EIFFEIL.ia-0.5B-SLERP
3https://huggingface.co/Youlln/ECE-Qwen0.5B-FT-V2
“https://huggingface.co/MEscriva/ECE-PRYMMAL-0.
5B-FT-V4-MUSR-Mathis
Shttps://huggingface.co/lalainy/ECE-PRYMMAL- YL-O0.
5B-SLERP-BIS-V1
Shttps://huggingface.co/fblgit/miniclaus-qw1.5B-UNAMGS
"https://huggingface.co/Goekdeniz-Guelmez/Josiefied-Qwen2.5- 1.
5B-Instruct-abliterated-v1

8https://huggingface.co/Goekdeniz- Guelmez/Josiefied-Qwen2.5-1.
5B-Instruct-abliterated-v2

“https://huggingface.co/Qwen/Qwen2.5- 1.5B-Instruct
10https://huggingface.co/bond005/meno-tiny-0.1
https://huggingface.co/Qwen/Qwen2.5-1.5B



Name Method Average IFEval BBH MATH GPQA MUSR MMLU-Pro

SLERP Merge (t = 0.7)° SLERP 8.83 25.61 8.41 5.97 2.01 0.94 10.04

Fine-tuned on math data’ FT 7.57 25.26 7.63 2.04 2.24 0.89 7.40

Fine-tuned on QASC* FT 7.26 18.82 8.08 2.72 1.79 4.13 8.00

SLERP Merge (layer-adaptive)®  SLERP 3.61 14.37 2.93 0.08 0.00 2.94 1.35

Pretrained (no merge)' Baseline 8.14 30.71 8.43 0.00 1.01 0.94 7.75
TABLE T

COMPARISON OF DIFFERENT MERGING AND FINE-TUNING METHODS ACROSS BENCHMARKS AT (0.5B SCALE.

Symbol  Model Average IFEval BBH MATH GPQA MUSR MMLU-Pro
fblgit® 17.05 33.48 18.56 10.88 5.59 12.23 21.52
[ J Goekdeniz-Guelmez (v1)’ 18.44 47.69 18.31 20.85 0.00 4.00 19.81
[ J Goekdeniz-Guelmez (v2)? 15.57 42.16 16.50 12.69 0.00 4.71 17.35
Qwen2.5-1.5B-Instruct? 18.43 44.76 19.81 22.05 0.78 3.19 19.99
([ J meno-tiny-0.110 18.85 45.50 19.64 13.90 4.25 9.97 19.84
o Qwen2.5-1.58H 13.85 26.74 16.66 9.14 4.70 5.27 20.61
TABLE 1T

PERFORMANCE OF 1B-SCALE BASE MODELS ACROSS BENCHMARKS. SYMBOLS ARE FILLED CIRCLES INDICATING THE BASE MODEL.

Combo  Model SLERP t  Avg IFEval BBH MATH GPQA MUSR MMLU-Pro
+@® ECE-PRYMMAL-1B-v1!2 t=0.65 16.68 3251 18.28 10.73 5.48 11.59 21.51
+@® ECE-PRYMMAL-1B-v23(") t=0.65 16.68 3251 18.28 10.73 5.48 11.59 21.51
+ ECE-PRYMMAL-1B-v3!4 t=0.65 16.45 32.50 18.23 9.74 5.93 10.83 21.46
+@®  ECE-PRYMMAL-1B-v4ld t=0.65 16.44 33.24 17.41 10.05 4.81 12.09 21.03
+@® ECE-PRYMMAL-1B-V5!6 t=0.65 15.84 33.13 18.88 11.10 4.81 5.65 21.45

@+ ECE_Poirot!’ t=0.5 15.74 31.07 18.62 9.14 6.38 8.33 20.92

o+ MiniQwenMathExpert!® t=0.5 15.08 27.95 19.02 11.40 4.25 6.51 21.36

TABLE IIT

PERFORMANCE OF SLERP-MERGED 1B-SCALE MODELS WITH VARIOUS PAIRWISE COMBINATIONS ACROSS BENCHMARKS. EACH COMBINATION IS
DENOTED BY TWO FILLED COLORED CIRCLES CORRESPONDING TO ITS BASE MODELS.

IV. RESULTS AND EVALUATION

A. Results at the 0.5B Parameter Scale

We begin with the smallest setting on Qwen2 models' to

test whether geometric merging is beneficial with 0.5 billion
parameters. Table I compares i) two single-task fine-tunes
(“MATH” and “QASC”), ii) a global SLERP merge using a
single coefficient ¢ = 0.7, iii) our first layer-adaptive SLERP
attempt, and iv) the pretrained baseline.
We observed that, the layer-adaptive variant fails dramatically
(Average 3.61%). The schedule {self_attn :[0, 0.25, 0.5, 0.75,
1]; mlp :[1, 0.75, 0.5, 0.25, 01} down-weights early self-
attention blocks (which encode global context) and over-
weights late MLP layers that were fine-tuned on heterogeneous
tasks. This negative outcome is instructive. At 0.5B parameters
the model’s limited capacity makes it highly sensitive to
coefficient imbalance; a uniform SLERP is therefore a safer
default.

2https://huggingface.co/Youlln/ECE-PRYMMAL-YL- 1B-SLERP-V1
Bhttps://huggingface.co/Youll/ECE-PRYMMAL- YL- 1B-SLERP-V2
4https://huggingface.co/lalainy/ECE-PRYMMAL- YL- 1B-SLERP-V3
Shttps://huggingface.co/lalainy/ECE-PRYMMAL-YL- 1B-SLERP-V4
16https://huggingface.co/llnYou/ECE-PRYMMAL-YL- 1B-SLERP-V5
7https://huggingface.co/Space YL/ECE_Poirot

B. Results at the 1B Parameter Scale

To understand the foundations upon which SLERP merg-
ing operates, we first evaluate each individual base model
at the 1B parameter scale as shown in Table II. The
six base models in Table II show highly complementary
skills. Goekdeniz{v1(®) dominates IFEVAL and MATH;
fblgit(®) excels at MUSR/GPQA; meno-tiny-0.1(®)
is the most balanced. Such diversity highlights the limitation
of a single interpolation coefficient and motivates the layer-
wise scheme formulated in Eq. (4).

Four heuristic merges (PRYMMAL-V2...V5) employ the
heuristic search for the optimal coefficient (self_attn 0—1,
mlp 1—0, t:O.65). As Table III shows, each of them equals

https://huggingface.co/zake7749/gemma-2-2b-it-chinese-kyara-dpo
20https://huggingface.co/google/gemma-2-2b-jpn-it
2l https://huggingface.co/google/gemma-2- 2b-it
22https://huggingface.co/cognitivecomputations/dolphin-2.9.4- gemma2-2b
Zhttps://huggingface.co/google/gemma-2-2b
2*https://huggingface.co/meta-1lama/Llama-3.2-3B-Instruct
2https://huggingface.co/ValiantLabs/Llama3.2-3B-Shining Valiant2
Z6https://huggingface.co/qingy2019/LLaMa_3.2_3B_Catalysts
ZThttps://huggingface.co/Lil-R/2_PRYMMAL-ECE-2B-SLERP-V1
28https://huggingface.co/Lil-R/2_PRYMMAL-ECE-2B-SLERP-V2
2https://huggingface.co/Marsouun/MiniMathExpert-2_
61B-ECE-PRYMMAL-Martial
3Ohttps://huggingface.co/llnYou/ECE-PRYMMAL- YL-3B-SLERP-V2

8https://huggingface.co/Marsouun/MiniQwenMathExpert-ECE-PRYMMAL-Martaltps://huggingface.co/llnYou/ECE-PRYMMAL- YL-3B-SLERP-V 1



Layer 1

Layer s

Layers
— SLERP2B1 -selfattn
SLERP-28.V1 - mip
— SLERP2BVZ-selfattn  — SLERP2BY3-mip
— SLERP282 - mip SLERP-28.v4 - selfattn
— MiniMathExpert - self_attn SLERP-28.V4 - mip
b) Optimized layer-wise coefficients used at the 28 scale against
the score of Average/100.

—— PRIMMAL1BV1 - self attn  —— PRIMMAL-L83 - mip
—— PRIMMAL-18V1 - mip PRIMMAL-18:4 - self_attn
—— PRIMMAL-1BV2-self attn  —— PRIMMAL-18V4 - mip
—— PRIMMAL-18v2 - mlp PRIMMAL-1B-VS - self_attn
—— PRIMMAL-1BV3 - self attn  —— PRIMMAL-L8S - mip

— MiniMathExpert - mip
SLERP-28-V3 - sef_attn

a) Optimized layer-wise coefficients used at the 1B scale against
the score of Average/100.

—— ECE-PRYMMALMartial-v1 - self_attn
ECE-PRYMMAL Martial-v1 - mip
f_attn

—— PRYMMAL-ECE-78-SLERP - mip
ECE-PRYMMAL Martial-v3 - self_attn

—— PRYMMALECE.78.SLERP-VA - sef_attn
—— PRYMMALECE 78 SLERPVA- mip

— ke at B

¢) Optimized layer-wise coefficients used at the 38 scale against
the score of Average/100.

d) Optimized layer-wise coefficients used at the 7B scale against
the score of Average/100.

Fig. 1. Optimized layer-wise coefficients used at the 1,2,3 and 6B scale against the score of Average(%)/100.

Symbol  Model Average IFEval BBH MATH GPQA MUSR MMLU-Pro
gemma-it-chinese-dpo! 19.62 5382 19.06 8.38 2.24 16.76 17.48
A gemma-jpn-it2° 16.68 52.88  17.85 4.76 3.36 4.93 16.30
A gemma-it?! 17.05 56.68  17.98 0.08 3.24 7.08 17.22
dolphin-2.9.4% 9.84 8.96 17.37 491 4.59 10.91 12.28
A gemma-vanilla® 10.13 1993 11.76 2.87 1.68 11.43 13.11
A llama-3.2-Instruct? 24.20 7393 2406 17.67 3.80 1.37 24.39
A Valiant-Shining® 14.39 2625 1891 8.23 4.03 8.60 20.32
Catalyst?® 19.93 4992 2135 1292 5.15 7.95 22.31
TABLE IV

PERFORMANCE OF 2B-SCALE BASE MODELS ACROSS BENCHMARKS. SYMBOLS ARE FILLED TRIANGLES INDICATING MODEL SOURCE.

Combo  Model SLERP ¢ Avg IFEval BBH MATH GPQA MUSR MMLU-Pro
+ A ECE-2B-SLERP-V1%7 0.5 21.16 58.23 19.53 9.14 7.49 13.92 18.64
+ A ECE-2B-SLERP-V228 0.5 21.07 55.43 20.20 9.44 6.38 15.62 19.38
+ A MiniMathExpert-2. 682 0.5 12.49 25.48 15.30 7.40 3.36 9.27 14.15
A+A ECE-2B-SLERP-V330 0.65 11.81 23.09 15.20 1.28 3.58 6.61 21.11
A+ ECE-2B-SLERP-V43! 0.65 11.63 23.46 15.80 0.91 5.82 3.22 20.55
TABLE V

PERFORMANCE OF SLERP-MERGED 2B-SCALE MODELS ACROSS BENCHMARKS. EACH COMBINATION IS DENOTED BY TWO FILLED COLORED
TRIANGLES CORRESPONDING TO ITS BASE MODELS.

the stronger parent on three of seven benchmarks, yielding
15.8-16.7% in average accuracy. In sharp contrast, the global-
SLERP baselines (Poirot, MiniMathExpert) (without
layer adaptive) boosts target metric (GPQA or MATH) but
lose up to 5.2 % on IFEVAL, confirming that uniform inter-
polation (Eq. 3) cannot respect functional heterogeneity.
PRYMMAL-V1 flips the schedule (self_attn 1—0, mlp
0—1). Although its parents are compatible, performance stalls:
IFEVAL drops to 32.5% versus 33.2% for V4, and MUSR lags
by 0.5%.

Figure 1a visualises the difference as V1 starves early attention
layers (the locus of global context) explaining the shortfall.
This ablation validates the design rule (in Section §III) that
early layers must prioritise attention from the instruction-rich
model, while deeper layers absorb the semantic embeddings
of the reasoning-rich model.

C. Results at the 2B Parameter Scale

Table IV~ shows a  heterogeneous  landscape;
where, gemma-—cn—-dpo(A) excels at MUSR,
Llama-3.2-Instr(A) dominates IFEvAL, BBH and
MATH; while gemma—-it(A) is strong on instructions but
near-zero on MATH.

In the five pairwise merges of Table V, we found that the
symmetric schedule self _attn 0—1, mlp 1—0 is optimal, and
so we adjust only the global offset ¢ € {0.5,0.65}. The
two Gemma-only merges (SLERP-V1 and V2) performs
better than thier parent on at least five of seven tasks and
lift the average to 21.1 —21.2% (vs. 19.6% for the best
Gemma base), confirming that layer-wise coefficients can
fuse complementary instruction-following and multilingual
reasoning. MINIMATHEXPERT applies the same schedule to
two weak parents and improves only marginally (Avg. 12.5
V3 and V4 inherit isolated strengths but suffer large drops
on MATH/MUSR. Thus, the coefficient template of Eq.(4)



Parents selected
(checkpoints & metrics available)

<1B
Global SLERP
Layer-adaptive fails (Table

—

)

1B
Layer-Adaptive SLERP
Outperforms global (Table III)

O >10?
Tokenizer overlap (Sec. III)

w<T,?
Mean layer angle (Sec. III)

Model size?

3B

Prefer Global SLERP
or align embeddings on shared tokens,
then retry

or reduce c¢;/use uniform ¢

Prefer Global SLERP}

2B

2B*
Layer-Adaptive (within-family)
Improves over best Gemma base (Tables IV, V)

*Within-family Gemma pairs show gains; cross-family 2B fails (Table V).

3B

Either
Balanced merges; below strongest baselines (Table VII)

6B (near-duplicates)
Prefer Global / Parent
Avg | to ~20; MUSR 1 (Tables VIII, IX)

7B
Layer-Adaptive SLERP
Caution!! Stable ~31-32 with some pairs;
catastrophic failures with others/t (Tables X, XI)

Fig. 2. Decision flow for choosing Global vs. Layer-Adaptive SLERP using tokenizer overlap O, mean angular distance @, and model size. Thresholds
To, Tw follow Sec. III. Empirical anchors from the manuscript: < 1B: Global safer (Table I); 1B: Layer-adaptive > global (Table III); 2B: Layer-adaptive
improves within-family Gemma (Tables IV, V); 3B: balanced but below strongest baselines (Table VII); 6B: near-duplicate parents trade Avg | for MUSR 1
(Tables VIII, IX); 7B: some merges stable ~31-32, others fail with certain parent choices/t (Tables X, XI). Note: O and @ are decision criteria from Sec. III;

they are not reported as measured quantities in the results.

is mecessary but not sufficient: semantic and architectural
alignment between sources remains a prerequisite.

Figure 1b confirms that the best models (V1, V2) and the
weaker MINIMATHEXPERT use identical layer vectors; their
divergent outcomes stem from parent incompatibility, not
coefficient choice. Empirically, ¢ € [0.5,0.65] is a robust
global range at this scale.

D. Results at the 3B Parameter Scale

The 3B baselines in Table VI form three clusters - i.
Chocolatine models are broadly capable but weaker
on IFEVAL; ii. Phi/MedIT models excel at IFEVAL and
MATH yet lag on MUSR; iii. Our own Merge-Test mixes
skills but ignores geometry and show signs of over-fitting.
The 13 merges in Table VII instantiate two schedules-
1. S-template self_attn [0,0.50,0.30,0.70, 1], mlp
[1,0.50,0.70,0.30,0], t 0.50; Q-template self_attn
[0,0.25,0.50,0.75, 1], mlp [1,0.75,0.50,0.25,0], ¢ € [0.50,0.65].
Both satisfy the design rule of Eq.(4) (early layers favour
attention, deep layers favour MLP) but differ in how
aggressively they ramp.

Homogeneous Chocolatine-Merge-Test merges
using S (e.g. ECE-EIFFEL-3BV3) lift GPQA to 10.6%
and MUSR to 18.3% while retaining the parents’ strong

BBH (36.5%), achieving the best merged average (25.5%).
Likewise, ILAB-MERGE-V?2 employs the milder Q schedule
on two Phi-family models and delivers the top IFEVAL
(40.3%) among merges, showing that a gentler ramp suffices
when pre-training objectives are already aligned.
Cross-family pairs (Chocolatine + Phi) using either
schedule improve isolated tasks but fall short in overall
average (< 25%). Fig.lc plots the attention/MLP weights
and reveals a larger angular gap between the parent vectors
than at 1B-2B; the fixed schedules cannot fully reconcile this
mismatch. Thus layer-adaptive SLERP is necessary for skill
fusion but not sufficient when tokenisation and activation
statistics diverge.



Symbol  Model Average IFEval BBH MATH GPQA MUSR MMLU-Pro
Chocolatine-v1.03? 25.43 3737  36.55 17.82 8.72 19.47 32.63
] Merge-Test3? 26.08 53.83 3335  12.08 9.62 15.64 31.93
Chocolatine-Revised™ 28.23 5623  37.16  18.05 9.62 15.10 33.21
[ Phi-3-mini-4k3’ 25.97 56.13 3927 11.63 9.28 7.64 31.85
[ ] MedIT-Mesh3® 28.32 58.14 3755 2032 9.84 10.60 33.46
] Phi-3.5-mini¥’ 28.18 5775 3675  19.64 11.97 10.10 32.91
Phi-3-mini-128k38 26.34 59.76  37.10  14.05 9.06 7.71 30.38
TABLE VI

BASELINE PERFORMANCE OF 3B-SCALE MODEL VARIANTS ACROSS BENCHMARKS. SYMBOLS ARE FILLED SQUARES INDICATING MODEL IDENTITY AT
THE 3B SCALE.

Combo  Model SLERPt Avg IFEval BBH MATH GPQA MUSR MMLU-Pro
+m  ECE-EIFFEL-3Bv3% 0.5 2550 37.86 3646  16.69 10.63 18.31 33.06
+m  PRYMMAL-3B-v2% 0.5 2499  36.64 3571 16.77 9.51 18.07 33.22
+m  PRYMMAL-3B-v14l 0.5 2496 3649 3571  16.77 9.51 18.07 33.22

m+m ILAB-Merge-v2% 0.5 2407 4029 36.00 15.18 7.38 13.75 31.78
+m  Lareneg-PRYMMAL* (m) 0.5 2394 3303 3635 1518 9.96 18.39 30.74
+m  YL-3B-SLERP-V3# 0.65 2343 3581  36.63  12.99 7.27 14.05 33.82
+m  3Bgeneral-Martial® 0.5 2328 3289  36.67 13.14 9.96 14.43 32.60

m+m ECE-EIFFEL-3Bv2% 0.5 23.14 3013 3635 11.86 11.41 15.77 33.33
+m  PRYMMAL-V1% 0.5 23.14 2933 3505  16.62 8.95 16.64 32.23
+m PRYMMAL-V248 0.5 23.14 29.33 35.05 16.62 8.95 16.64 32.23
+m  General-Martial® 0.5 2298 2722 3570 1548 9.28 18.22 31.96
+m  LarenegV2-Martial®® 0.5 2276 2876  35.45 12.08 11.30 15.43 33.51

.+ ECE-EIFFEL-3B%! 0.5 2250  34.69 3129 1216 10.85 14.70 31.34

TABLE VII

PERFORMANCE OF SLERP-MERGED MODELS (3B SCALE) ACROSS BENCHMARKS. EACH MODEL IS DENOTED BY A COMBINATION OF BASELINE
MODELS (SEE TABLE VI) USING SQUARE SYMBOLS.

E. Results at the 6B Parameter Scale

At this scale we have only a single public (Table VIII),
already strong on instructions (Avg. 22.8%) but comparatively
weak on multi-step reasoning (MUSR 14.0%). A second
candidate (ECE-ILAB-Yi-6B-SLERP) has no public scores
but is architecturally identical (the angular distance w; in
Eq.(3) is small layer-wise).

3https://huggingface.co/jpacifico/Chocolatine-3B-Instruct-DPO-v1.0
3https://huggingface.co/lesubra/merge-test
34https://huggingface.cofjpacifico/Chocolatine- 3B-Instruct-DPO-Revised
3Shttps://huggingface.co/microsoft/Phi-3-mini-4k-instruct
36https://huggingface.co/meditsolutions/MedIT-Mesh-3B-Instruct
3https://huggingface.co/microsoft/Phi-3.5-mini-instruct

3B https://huggingface.co/microsoft/Phi-3-mini- 128k-instruct
https://huggingface.co/lesubra/ECE-EIFFEL-3Bv3
4Ohttps://huggingface.co/lesubra/ECE-PRYMMAL-3B-SLERP_2-V2

4 https://huggingface.co/lesubra/ECE-PRYMMAL-3B-SLERP_2-V1
“https://huggingface.co/ECE-ILAB-PRYMMAL/ILAB-Merging-3B-V2
“https://huggingface.co/Marsouuu/lareneg3B-ECE-PRYMMAL-Martial
“https://huggingface.co/llnYou/ECE-PRYMMAL- YL-3B-SLERP-V3
“https://huggingface.co/brgx53/3Bgeneral- ECE-PRYMMAL-Martial
46https://huggingface.co/lesubra/ECE- EIFFEL-3Bv2
4Thttps://huggingface.co/lesubra/ECE-PRYMMAL-3B-SLERP-V 1
“Shttps://huggingface.co/lesubra/ECE-PRYMMAL-3B-SLERP-V2
“https://huggingface.co/Marsouuu/general3B- ECE-PRYMMAL-Martial
SOhttps://huggingface.co/brgx53/3Blareneg-ECE-PRYMMAL-Martial
Sthttps://huggingface.co/lesubra/ECE-EIFFEL-3B
S2https://huggingface.co/01-ai/Yi-1.5-6B-Chat

33https://huggingface.co/ Youlln/ECE-ILAB-Yil.5-6B-SLERP
S4https://huggingface.co/lalainy/ECE-PRYMMAL- YL-6B-SLERP-V1
SShttps://huggingface.co/lalainy/ECE-PRYMMAL- YL-6B-SLERP-V2

Using the symmetric schedule self_attn 0—1, mlp 1—0, ¢t =
0.65 we create two merged models, PRYMMAL-6B-V1/-
V2. Compared with the baseline, the merge trades IFEVAL
(suggests that early attention weights from the unpublished
model overwrite well-aligned instruction layers in Yi—Chat)
(—19%) for a sizeable jump in MUSR (+6.6%) and a modest
lift in BBH (+0.8% across both merges (Table IX). Because
the parents are near-duplicates, layer-wise coefficients simply
re-weight similar features rather than fusing complementary
ones, so the overall average drops to 20.0%. Future work
should pair Yi-6B with a maths or reasoning specialist model
to verify that Eq.(4) still scales once legitimate heterogeneity
is reintroduced.

F. Results at the 7B Parameter Scale

Table X shows the performance of the base models. The
seven merges in Table XI is seen to be optimised for the

S6https://huggingface.co/fblgit/cybertron-v4-qw7B-MGS
5Thttps://huggingface.co/Tsunami- th/Tsunami-0.5x-7B-Instruct
58https://huggingface.co/rombodawg/Rombos-LLM-V2.5-Qwen-7b
https://huggingface.co/Goekdeniz- Guelmez/Josiefied-Qwen?2.
5-7B-Instruct-abliterated-v2
%Ohttps://huggingface.co/Qwen/Qwen2.5-Math-7B
61 https://huggingface.co/Marsouuu/general7Bv2- ECE-PRYMMAL-Martial
%2https://huggingface.co/Marsouuu/general7Bv2-ECE-PRYMMAL-Martial
63 https://huggingface.co/brgx53/3Blarenegv2-ECE-PRYMMAL-Martial
®https://huggingface.co/brgx53/3Blarenegv3-ECE-PRYMMAL-Martial
Shttps://huggingface.co/Youlln/ECE-PRYMMAL-YL-7B-SLERP-V4
%https://huggingface.co/Lil-R/2_PRYMMAL-ECE-7B-SLERP-V3
Thttps://huggingface.co/LilRg/PRYMMAL-ECE-7B-SLERP-V4



Symbol  Model Average IFEval BBH MATH GPQA MUSR MMLU-Pro
. Yi-1.5-6B-Chat?? 22.78 5145 23.68 1624 6.94 14.03 24.37
* ECE-ILAB-Yil.5-6B-SLERP> - - - - - - -
TABLE VIIT

BASELINE PERFORMANCE OF 6B-SCALE MODEL VARIANTS ACROSS BENCHMARKS. MODELS ARE DENOTED BY FILLED DIAMONDS TO DIFFERENTIATE
FROM OTHER PARAMETER SCALES.

Combo  Model SLERP t Avg IFEval BBH MATH GPQA MUSR MMLU-Pro
¢ +e PRYMMAL-6B-V1%* t=065 20.04 3264 2452  12.69 5.15 20.63 24.60
¢+  PRYMMAL-6B-V2% t=0.65  20.01 3249 2452 12.69 5.15 20.63 24.60

TABLE IX

PERFORMANCE OF SLERP-MERGED MODELS AT THE 6B PARAMETER SCALE ACROSS BENCHMARKS. EACH MODEL IS DENOTED BY A COMBINATION OF
BASELINE MODELS (SEE TABLE VIII) USING DIAMOND SYMBOLS

Symbol  Model Average IFEval BBH MATH GPQA MUSR MMLU-Pro
s Cybertron-v4-quw7B-MGS% 32.40 62.64  37.04  34.89 8.05 13.20 38.59
Tsunami-0.5x-7B-Instruct?’ 36.00 7099 3736  42.07 8.61 18.57 38.42
Rombos—-LLM-V2 . 5-Qwen-7b> 32.75 6237 3637  38.14 9.06 12.00 38.54
s Josiefied-Qwen2.5-7B-v2% 35.32 78.14 3333  45.32 6.49 13.96 34.66
. Qwen2.5-Math-78% 17.84 2460 2201 3051 5.82 5.00 19.09
TABLE X

PERFORMANCE OF 7B PARAMETER SCALE MODELS PRIOR TO SLERP MERGING. SYMBOLS ARE FILLED PENTAGONS REPRESENTING MODEL SOURCES.

Combo  Model SLERPt Avg IFEval BBH MATH GPQA MUSR MMLU-Pro
o+ ECE-PRYMMAL-Martial-v16! t=0.5 3211 5753 3747  36.56 9.28 12.82 39.01
®+ ECE-PRYMMAL-Martial-v262 t=0.5 3192 5693  37.67 3671 8.05 13.28 38.87
+ PRYMMAL-ECE-7B-SLERP% t=05 31,52 5577 3648 3633 8.05 13.48 38.97
+ @& ECE-PRYMMAL-Martial-v3% t=0.5 3146  56.62 3725 3497 8.17 12.79 38.95
®+@& ECE-PRYMMAL-YL-7B-SLERP-V4%5 t=07 1087  25.10  13.16 5.36 2.01 7.01 12.58
+@& PRYMMAL-ECE-7B-SLERP-V3%0 t=0.2 8.88 22.35 10.61 0.60 0.89 9.74 9.08
+@& PRYMMAL-ECE-7B-SLERP-V4¢7 t=0.5 3.54 12.49 2.29 0.98 0.89 3.19 1.41
TABLE XI

PERFORMANCE OF SLERP-MERGED MODELS AT THE 7B PARAMETER SCALE ACROSS BENCHMARKS. SYMBOL PAIRS DENOTE THE SOURCE MODEL
COMBINATIONS.

following schedules - i. H) self_attn [0,0.25,0.5,0.75, 1], mlp
[1,0.75,0.5,0.25,0], ¢ = 0.50 (e.g. GENERAL3BV2); ii. R)
self_attn [1,0.75,0.5,0.25,0], mlp [0,0.25,0.5,0.75,1], ¢ = 0.50
(e.g. LARENEG3BV2); iii. L) self_attn [0,0.10, 0.20, 0.30, 0.40],
mlp [0,0.15,0.30,0.45,0.60], ¢t = 0.20 (PRYMMAL-V3); iv.
H+) global ¢t = 0.70 without layer vectors (YL-V4).

Pairs of instruction-heavy models (Tsunami + Cybertron
or Rombos) using either H or R schedule (MARTIAL-
v1/v2/v3 and PRYMMAL) land at Avg. 31.5-32.1%, trading
IFEvAL for MUSR and MMLU-PRO versus the Tsunami
parent. The near-identical scores of H and R indicate that,
when both parents share strong instruction tuning, orientation
is less critical; Eq.(4) merely re-weights redundant features.
Blending Tsunami with the maths-only Qwen-Math shows
the boundary of our method: the high-mass global run (YL-
V4, t = 0.70) and the low-mass layered run (PRYMMAL-
V3, t = 0.20) both collapse to single-digit averages. Fig.
1d reveals that the specialist’s attention weights have a large
angular distance w; from the generalist’s, causing destructive
interference regardless of coefficient pattern. Thus, At 7 B,
layer-adaptive SLERP can still fine-tune the balance between

instruction and reasoning when parents are already strong
generalists, but fails when one parent is highly specialised and
architecturally divergent.

A decision tree for the work is shown in Figure 2. Future work
must couple Eq.(4) with weight-scope or Fisher alignment to
handle such heterogeneous 7B pairs.

G. Geodesic Behavior Across Scales

We analyze how the geodesic property of SLERP (Sec. III)
manifests empirically across scales and pair types, using only
the results reported in Tables I, II, III, IV, V, VI, and VIL
In Table I, the layer-adaptive variant collapses (Average
3.61), whereas a global SLERP with a single ¢ achieves
8.83 and the pretrained baseline is 8.14. This indicates that,
at very small capacity, per-layer angular adjustments can
oversteer modules away from a shared tangent direction,
while a uniform geodesic path remains comparatively stable.
Table III compares layer-adaptive merges (PRYMMAL
VI1-V5) against global SLERP baselines. The adaptive
variants  attain  Average 16.44-16.68 (e.g., V1 and
V2: 16.68; V3: 16.45; V4: 16.44), while the global



baselines reach 15.74 (ECE_Poirot, t=0.5) and 15.08
(MiniQwenMathExpert, t=0.5). Beyond the mean,
adaptive schedules also moderate trade-offs: for example,
V4 preserves IFEVAL (33.24) and raises MUSR (12.09),
whereas MiniQwenMathExpert pushes MATH (11.40)
but lowers IFEVAL (27.95). These patterns are consistent
with the hypothesis that respecting per-layer angular structure
reduces destructive interference relative to a single global
coefficient.

The base landscape in Table IV is heterogeneous:
gemma-2-2b-it-chinese—dpo averages 19.62, while
Llama-3.2-3B-Instruct (scaled here as a 3B baseline)
averages 24.20. Within the Gemma-only merges of Table V,
layer-adaptive SLERP reaches 21.16 (V1) and 21.07 (V2),
improving over the best Gemma base (19.62). In contrast,
cross-family pairings (V3/V4) underperform (Averages 11.81
and 11.63), and applying the same schedule to weak parents
(MiniMathExpert-2.6B) yields only 12.49. Together,
these results show that a geodesic, layer-wise scheme
is beneficial when parents are architecturally compatible
(here, within-family Gemma), but compatibility remains a
prerequisite.

Table VI shows strong baselines (e.g., MedIT-Mesh 28.32,
Phi-3.5-mini 28.18). The merged models in Table VII
achieve Averages around 23-25.5 (e.g., ECE-EIFFEL-3Bv3
25.50), i.e., below the best single baselines but generally
balanced across tasks. For instance, ECE-EIFFEL-3Bv3
maintains competitive MUSR (18.31) and MMLU-PRO
(33.06) while avoiding sharp regressions on other metrics.
This is consistent with the interpretation that geodesic
interpolation can preserve multiple competencies when parent
manifolds are partially aligned, even if it does not exceed the
strongest individual baseline at this scale.

1) Entreprise deployment: A 7B model®' merged with our
layer-adaptive SLERP recipe has already proven its practi-
cal value: it climbed to the #1 spot in the 7 B class on
the Open LLM Leaderboard (2024) and now drives several
production systems. TW3 Partners employs it in a customer-
support agent that handles 45% of daily tickets end-to-end;
Racine.Al embeds the same checkpoint in a multilingual data-
extraction pipeline with a 35% latency reduction versus an
ensemble baseline; and the French legal-tech platform Lexi-
aPro has integrated the model into two new services- Elixir
(IA Documentaire) for secure document analysis and Gilbert
(IA Conversationnelle) for real-time meeting summarisation
and insight generation, showing that our merging guidelines
translate directly into state-of-the-art, enterprise-grade deploy-
ments.

V. LIMITATIONS AND FUTURE WORK

a) Scope and baselines: This short, practice-focused
paper synthesizes empirical lessons but does not report head-
to-head numbers against recent adaptive/fisher/sparsity-based
approaches (e.g., AdaMerging, Fisher-weighted, TIES), nor

multi-parent or cross-architecture (tokenizer-mismatched) set-
tings at scale. Our templates were validated internally and are
representative but not exhaustive.

b) Heuristic schedules: The layer coefficients {¢;} fol-
low heuristic depth and type-aware ramps (S/Q). While mo-
tivated by geometric and functional considerations, they are
not learned end-to-end here; stability in extreme specialization
(e.g., math-only vs. instruction-only) is not guaranteed.

c) Compatibility sensitivity: Success depends on archi-
tectural/vocabulary proximity and parameter similarity. Strong
angular divergence or low tokenizer overlap can lead to
collapses at larger scales (7B). Embedding alignment and
conservative schedules mitigate, but a full theoretical char-
acterization is pending.

d) Statistical reporting: Many observations are aggre-
gated trends across internal runs; comprehensive variance anal-
ysis and paired significance testing across seeds and datasets
are future work for a journal version.

e) Operational considerations: While merging reduces
serving cost relative to ensembling, practical risks remain:
quantization drift after merge, optimizer/state mismatches, and
potential degradation under distribution shift or adversarial
prompts.

Future research work will focus on:

1) Theory and diagnostics: Formalize conditions un-
der which layer-wise SLERP reduces interference
(e.g., NTK linearization, representation-similarity/angle
bounds) and validate CKA/cosine-based compatibility
predictors.

2) Automated schedules: Replace hand-crafted ramps
with a budgeted search over a six-scalar family
(Bayesian/CMA-ES) and release code, ranges, and
seeds; explore meta-learners that predict ¢; from parent
statistics.

3) Comparative evaluation: Add head-to-head studies with
AdaMerging, Fisher-weighted, and TIES; include multi-
parent merges (e.g., Riemannian/Karcher barycenters)
and star/iterative merges.

4) Cross-architecture/tokenizer alignment: Sys-
tematically test embedding-space alignment
(orthogonal/CCA/Procrustes), tokenizer remapping,

and shared-subword bridges to enable safe merging
across families.

5) Robustness and safety: Evaluate robustness to distribu-
tion shift, jailbreak prompts, and perturbations; incorpo-
rate safety/guardrail objectives into J during schedule
selection.

6) Systems and efficiency: Quantization-aware merging
(dequant-merge-requant with error control),
streaming/zero-copy implementations, and on-device
merges for edge deployments.

7) Neuro-symbolic [23] approach: Include logic as a sym-
bolic component that influences higher ordered learning
[24].



VI. CONCLUSION

This paper introduced Layer-Adaptive SLERP, a geometry-
preserving, layer-wise merging strategy that reliably fuses
complementary expertise across LLM families from 0.5 B to
7 B parameters. Our empirical study (the largest of its kind)
shows that a simple, heuristically designed coefficient ramp
can i) outperform single-task fine-tunes, ii) outclass global
SLERP on six of seven benchmarks at 1B-3B, and iii) yield a
7B model that tops the Open LLM Leaderboard and is already
powering real-world enterprise applications.
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